Ablation of the androgen receptor gene modulates atrial electrophysiology and arrhythmogenesis with calcium protein dysregulation.
نویسندگان
چکیده
Androgen deficiency is important in the pathophysiology of atrial fibrillation. Androgen regulates cardiac electrophysiology and calcium (Ca(2+)) homeostasis. The purpose of this study is to evaluate whether androgen receptor knockout (ARKO) can modulate atrial electrophysiology and arrhythmogenesis with modulation of Ca(2+) homeostasis proteins. We used conventional microelectrodes to study the action potential (AP) in left atrium (LA) tissues prepared from wild-type (WT) and ARKO mice (aged 6-10 months) before and after the administration of isoproterenol, hypocalcemic/hypercalcemic solutions, and ouabain. Echocardiography and Western blots were used to evaluate the cardiac function and expression levels of ionic channel proteins in WT and ARKO LAs. ARKO LAs had larger LA diameter with decreased LA fractional shortening than did WT LAs. In the current study, we found that ARKO LAs had a lower negative resting membrane potential and a greater 90% AP duration (APD) than did WT LAs. Isoproterenol increased the incidence and amplitude of delayed afterdepolarizations (DADs) in ARKO LAs but not in WT LAs. Hypocalcemic solutions prolonged APD in WT and ARKO LAs but increased DAD amplitude only in ARKO LAs. Hypercalcemic solutions shortened APD in ARKO LAs but not in WT LAs. Ouabain increased DAD amplitude in ARKO LAs but not in WT LAs. ARKO LAs expressed higher amounts of Ca(2+)/calmodulin-dependent protein kinase II, Na(+)/Ca(2+) exchanger, and phosphorylated phospholamban (Ser-16/Thr-17 site) and less Cav1.2, Kir2.1, Kir3.1, and Kv7.1 than WT LAs. These observations indicate that ARKO alters atrial electrophysiology with increased atrial arrhythmogenesis.
منابع مشابه
Calcium dysregulation in atrial fibrillation: the role of CaMKII
Atrial fibrillation (AF) is the most frequently encountered clinical arrhythmia and is associated with increased morbidity and mortality. Ectopic activity and reentry are considered major arrhythmogenic mechanisms contributing to the initiation and maintenance of AF. In addition, AF is self-reinforcing through progressive electrical and structural remodeling which stabilize the arrhythmia and m...
متن کاملRedox and Activation of Protein Kinase A Dysregulates Calcium Homeostasis in Pulmonary Vein Cardiomyocytes of Chronic Kidney Disease
BACKGROUND Chronic kidney disease (CKD) increases the occurrence of atrial fibrillation and pulmonary vein (PV) arrhythmogenesis. Calcium dysregulation and reactive oxygen species (ROS) enhance PV arrhythmogenic activity. The purposes of this study were to investigate whether CKD modulates PV electrical activity through dysregulation of calcium homeostasis and ROS. METHODS AND RESULTS Biochem...
متن کاملTrastuzumab increases pulmonary vein arrhythmogenesis through modulating pulmonary vein electrical and conduction properties via phosphatidylinositol 3-kinase signaling
Objective(s): Drug-induced atrial fibrillation (AF) is considered an adverse effect of chemotherapeutic drugs. AF is a crucial risk factor for stroke, heart failure, myocardial infarction, and mortality. Pulmonary veins (PVs) are considered triggers inducing AF, and the sinoatrial node (SAN) may modulate PV activity and participate in AF genesis. AF was associated with...
متن کاملP-202: StuI Polymorphism on the Androgen Receptor Gene in Women with Endometriosis
Background: Androgens have an anti-proliferative effect on endometrial cells. Human androgen receptor (AR) gene contains two polymorphic short tandem repeats of GGC and CAG, and a single-nucleotide polymorphism on exon 1 that is recognized by the restriction enzyme, StuI. Prior studies have shown that the lengths of the CAG and GGC repeats are inversely and linearly related to AR activity and a...
متن کاملFibroblast growth factor 23 dysregulates late sodium current and calcium homeostasis with enhanced arrhythmogenesis in pulmonary vein cardiomyocytes
Fibroblast growth factor 23 (FGF23), elevated in chronic renal failure, increases atrial arrhythmogenesis and dysregulates calcium homeostasis. Late sodium currents (INa-Late) critically induces ectopic activity of pulmoanry vein (the most important atrial fibrillation trigger). This study was to investigate whether FGF23 activates the INa-Late leading to calcium dysregulation and increases PV ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 154 8 شماره
صفحات -
تاریخ انتشار 2013